Math 53: Multivariable Calculus

Sections 102, 103

Worksheet for 2020-04-17

Conceptual Review

Question 1. In the below, *f*, *g* denote scalar fields while **F**, **G** denote vector fields. Which of these expressions do not make sense? For the ones that do make sense, do they output a scalar field or a vector field?

(a) grad f The in the , outputs a vector field.
(b) curl(div F) but carl takes a vector field argument.
(c) grad(div(curl F)) =
$$\vec{0}$$
 zero vector field
(c) grad(div(curl F)) = $\vec{0}$ zero vector field = $\vec{0}$
(c) $\nabla \cdot (\nabla \times (fG))$ and puts a scalar field = $\vec{0}$
(c) $\nabla \cdot (\nabla f \times \nabla g) = \nabla g \cdot (\nabla \times \nabla f) - \nabla f \cdot (\nabla \times \nabla g) = \vec{0}$ scalar field.
(f) $\nabla \cdot (\nabla f \times \nabla g) = \nabla g \cdot (\nabla \times \nabla f) - \nabla f \cdot (\nabla \times \nabla g) = \vec{0}$ scalar field.

Question 2. Of the expressions that do make sense above, are there any that are *always* equal to zero (either the zero scalar field or the zero vector field)?

Hint: The vector identity $\nabla \cdot (\mathbf{F} \times \mathbf{G}) = \mathbf{G} \cdot (\nabla \times \mathbf{F}) - \mathbf{F} \cdot (\nabla \times \mathbf{G})$ may be useful for one of the expressions.

Problems

- **Problem 1.** Let *n* be a constant, let *r* denote the scalar field $\sqrt{x^2 + y^2 + z^2}$, and let **r** denote the vector field $\langle x, y, z \rangle$. Compute the following:
 - Compute the following: (a) $\nabla(r^n)$ (b) $\nabla \times (r^{n-1}\mathbf{r})$ (c) $\nabla \cdot (r^{n-1}\mathbf{r})$. $\nabla \times \langle P_{P}Q, R \rangle = \det \begin{bmatrix} \hat{r} & \hat{r} & \hat{k} \\ \frac{3}{2y} & \frac{3}{2y} & \frac{3}{2y} \end{bmatrix} = \langle R_{y} - Q_{z}, P_{z} - R_{x}, Q_{x} - P_{y} \rangle$

For part (c), what value of n makes the answer equal to zero?

(a) Note r² a little more convenient than r

$$\nabla(r^{n}) = \nabla((r^{2})^{n/2}) = \frac{n}{2}(r^{2})^{\frac{n}{2}-1} \nabla(r^{2}) = \boxed{nr^{n-2}\vec{r}}, \qquad \nabla(r^{n+1}) = r^{n-1}\vec{r}$$

(b)
$$\nabla x (r^{n-1}\vec{r}) = \nabla (r^{n-1}) x \vec{r} + r^{n-1} (\nabla x \vec{r}) = \vec{0}$$

= $\vec{0}$ = $\vec{0}$ by direct comp

$$\begin{array}{l} (c) \ \nabla \cdot (r^{n-1}\vec{r}) = \ \nabla (r^{n-1}) \cdot \vec{r} + r^{n-1} \ \nabla \cdot \vec{r} = (n-1)r^{n-3}\vec{r} \cdot \vec{r} + r^{n-1} \ \nabla \cdot \vec{r} \\ & r^2 & 3 \end{array} \\ = (n-1)r^{n-1} + r^{n-1} \ 3 \\ = \overline{[(n+2)r^{n-1}]} \end{array}$$

So $\nabla \cdot (r^{n-1}\vec{r}) = 0$ (zero scalar field) when n = -2. (This is the exponent encountered when dealing w/ electromagnetism, gravity, etc...)